Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 762
Filtrar
1.
Front Immunol ; 13: 825619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154145

RESUMO

Young children and older adults suffer from enhanced susceptibility to infections with blood-borne pathogens. An essential step towards immunity is the establishment of a splenic marginal zone (sMZ), which is immature at below 2 years of age. At approximately 5 years of age, an adult level of protection is reached but wanes again in older adults. Although the infant sMZ is thought to contain mostly naïve B cells, memory B cells are recruited to and recirculate from the sMZ throughout life, and class-switched sMZ B cells dominate in older adults. For a better resolution of naïve versus memory B-cell subset accumulation in the sMZ, we performed a single cell-based gene expression analysis of (CD21highIgMhigh) sMZ B cells among five healthy donors (age 3 to 48 years) and validated the sMZ B-cell subset composition by flow cytometry of 147 spleen biopsies (age 0 to 82 years). We identified a major sMZ B-cell subpopulation, which is abundant at birth but decreases with age. These cells lack CD27 expression but carry a weak-to-intermediate memory B-cell signature. These CD27neg sMZ B cells are either IGHV-unmutated or carry only a few IGHV mutations early in life but show average memory B-cell IGHV mutation frequencies (>3%) in adults. The activation and proliferation potential of CD27neg sMZ B cells is significantly above that of non-sMZ B cells already in children. Our study suggests that the human sMZ B-cell pool changes with age, encompassing a major population of lowly Ig-mutated CD27neg but antigen-experienced B cells early in life.


Assuntos
Linfócitos B/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Baço/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Pessoa de Meia-Idade , Mutação , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Adulto Jovem
2.
Cell Rep ; 38(7): 110393, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35143756

RESUMO

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


Assuntos
COVID-19/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Vacinação , Linfócitos B/imunologia , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Evolução Clonal , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Isotipos de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Cinética , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Hipermutação Somática de Imunoglobulina/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
3.
J Immunol ; 208(3): 772-779, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022271

RESUMO

Human IgE is useful for immunological assays, such as sensitization of FcεRI-positive cells and IgE measurement. In this study, we report the development of a recombinant Ig fragment, designated IgCw-γεκ, as an alternative reagent to human IgE. IgCw-γεκ (∼130 kDa) comprises two hybrid constant H chain regions (Cγ1-Cε2-4, each ∼53 kDa) and two constant κ L chains (Cκ, each ∼12 kDa) and lacks a V domain. The presence of Cγ1 instead of Cε1 within the H chain increased the production yield and facilitated assembly of the H and L chains. IgCw-γεκ was produced in cultured human embryonic kidney 293F cells, with a yield of ∼27 mg/l. IgCw-γεκ bound to human FcεRIαRs expressed on the surface of rat basophilic leukemia-2H3 cells. A ß-hexosaminidase release assay revealed that the biological activity of IgCw-γεκ was comparable with that of IgE. The IgE concentration measured using IgCw-γεκ as a standard was similar to that measured using IgE as a standard. These results suggest that the IgCw-γεκ molecule retains the basic characteristics of IgE, but does not cross-react with Ags, making it an alternative to the IgE isotype references used in a variety of immunological assays.


Assuntos
Imunoglobulina E/imunologia , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias kappa de Imunoglobulina/imunologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias kappa de Imunoglobulina/genética , Indicadores e Reagentes , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
4.
Immunity ; 55(2): 341-354.e7, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990590

RESUMO

The high genetic diversity of hepatitis C virus (HCV) complicates effective vaccine development. We screened a cohort of 435 HCV-infected individuals and found that 2%-5% demonstrated outstanding HCV-neutralizing activity. From four of these patients, we isolated 310 HCV antibodies, including neutralizing antibodies with exceptional breadth and potency. High neutralizing activity was enabled by the use of the VH1-69 heavy-chain gene segment, somatic mutations within CDRH1, and CDRH2 hydrophobicity. Structural and mutational analyses revealed an important role for mutations replacing the serines at positions 30 and 31, as well as the presence of neutral and hydrophobic residues at the tip of the CDRH3. Based on these characteristics, we computationally created a de novo antibody with a fully synthetic VH1-69 heavy chain that efficiently neutralized multiple HCV genotypes. Our findings provide a deep understanding of the generation of broadly HCV-neutralizing antibodies that can guide the design of effective vaccine candidates.


Assuntos
Anticorpos Amplamente Neutralizantes/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/genética , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Epitopos , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/química , Anticorpos Anti-Hepatite C/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
5.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769026

RESUMO

Human immunoglobulin G (IgG) is the primary component of the human serum antibody fraction, representing about 75% of the immunoglobulins and 10-20% of the total circulating plasma proteins. Generally, IgG sequences are highly conserved, yet the four subclasses, IgG1, IgG2, IgG3, and IgG4, differ in their physiological effector functions by binding to different IgG-Fc receptors (FcγR). Thus, despite a similarity of about 90% on the amino acid level, each subclass possesses a unique manner of antigen binding and immune complex formation. Triggering FcγR-expressing cells results in a wide range of responses, including phagocytosis, antibody-dependent cell-mediated cytotoxicity, and complement activation. Textbook knowledge implies that only B lymphocytes are capable of producing antibodies, which recognize specific antigenic structures derived from pathogens and infected endogenous or tumorigenic cells. Here, we review recent discoveries, including our own observations, about misplaced IgG expression in tumor cells. Various studies described the presence of IgG in tumor cells using immunohistology and established correlations between high antibody levels and promotion of cancer cell proliferation, invasion, and poor clinical prognosis for the respective tumor patients. Furthermore, blocking tumor-cell-derived IgG inhibited tumor cells. Tumor-cell-derived IgG might impede antigen-dependent cellular cytotoxicity by binding antigens while, at the same time, lacking the capacity for complement activation. These findings recommend tumor-cell-derived IgG as a potential therapeutic target. The observed uniqueness of Ig heavy chains expressed by tumor cells, using PCR with V(D)J rearrangement specific primers, suggests that this specific part of IgG may additionally play a role as a potential tumor marker and, thus, also qualify for the neoantigen category.


Assuntos
Imunoglobulina G/imunologia , Neoplasias/imunologia , Animais , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linfócitos B/imunologia , Ativação do Complemento/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Fagocitose/imunologia , Receptores de IgG/imunologia
6.
Front Immunol ; 12: 728694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646268

RESUMO

Monoclonal antibodies (mAbs) are an important class of therapeutics used to treat cancer, inflammation, and infectious diseases. Identifying highly developable mAb sequences in silico could greatly reduce the time and cost required for therapeutic mAb development. Here, we present position-specific scoring matrices (PSSMs) for antibody framework mutations developed using baseline human antibody repertoire sequences. Our analysis shows that human antibody repertoire-based PSSMs are consistent across individuals and demonstrate high correlations between related germlines. We show that mutations in existing therapeutic antibodies can be accurately predicted solely from baseline human antibody sequence data. We find that mAbs developed using humanized mice had more human-like FR mutations than mAbs originally developed by hybridoma technology. A quantitative assessment of entire framework regions of therapeutic antibodies revealed that there may be potential for improving the properties of existing therapeutic antibodies by incorporating additional mutations of high frequency in baseline human antibody repertoires. In addition, high frequency mutations in baseline human antibody repertoires were predicted in silico to reduce immunogenicity in therapeutic mAbs due to the removal of T cell epitopes. Several therapeutic mAbs were identified to have common, universally high-scoring framework mutations, and molecular dynamics simulations revealed the mechanistic basis for the evolutionary selection of these mutations. Our results suggest that baseline human antibody repertoires may be useful as predictive tools to guide mAb development in the future.


Assuntos
Anticorpos Monoclonais/genética , Desenvolvimento de Medicamentos , Epitopos de Linfócito T/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Mutação , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Análise Mutacional de DNA , Bases de Dados Genéticas , Aprovação de Drogas , Estabilidade de Medicamentos , Epitopos de Linfócito T/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/uso terapêutico , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/uso terapêutico , Modelos Genéticos , Simulação de Dinâmica Molecular , Estabilidade Proteica , Estados Unidos , United States Food and Drug Administration
7.
Front Immunol ; 12: 703574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539634

RESUMO

CD38 is the major NAD+-hydrolyzing ecto-enzyme in most mammals. As a type II transmembrane protein, CD38 is also a promising target for the immunotherapy of multiple myeloma (MM). Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Using phage display technology, we isolated 13 mouse CD38-specific nanobodies from immunized llamas and produced these as recombinant chimeric mouse IgG2a heavy chain antibodies (hcAbs). Sequence analysis assigned these hcAbs to five distinct families that bind to three non-overlapping epitopes of CD38. Members of families 4 and 5 inhibit the GDPR-cyclase activity of CD38. Members of families 2, 4 and 5 effectively induce complement-dependent cytotoxicity against CD38-expressing tumor cell lines, while all families effectively induce antibody dependent cellular cytotoxicity. Our hcAbs present unique tools to assess cytotoxicity mechanisms of CD38-specific hcAbs in vivo against tumor cells and potential off-target effects on normal cells expressing CD38 in syngeneic mouse tumor models, i.e. in a fully immunocompetent background.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antineoplásicos/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Cadeias Pesadas de Imunoglobulinas/imunologia , Glicoproteínas de Membrana/imunologia , Neoplasias/imunologia , ADP-Ribosil Ciclase 1/genética , Animais , Anticorpos Monoclonais Murinos/genética , Anticorpos Antineoplásicos/genética , Linhagem Celular Tumoral , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
8.
Immunohorizons ; 5(8): 675-686, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433623

RESUMO

Ab repertoire diversity plays a critical role in the host's ability to fight pathogens. CDR3 is partially responsible for Ab-Ag binding and is a significant source of diversity in the repertoire. CDR3 diversity is generated during VDJ rearrangement because of gene segment selection, gene segment trimming and splicing, and the addition of nucleotides. We analyzed the Ab repertoire diversity across multiple experiments examining the effects of spaceflight on the Ab repertoire after vaccination. Five datasets from four experiments were analyzed using rank-abundance curves and Shannon indices as measures of diversity. We discovered a trend toward lower diversity as a result of spaceflight but did not find the same decrease in our physiological model of microgravity in either the spleen or bone marrow. However, the bone marrow repertoire showed a reduction in diversity after vaccination. We also detected differences in Shannon indices between experiments and tissues. We did not detect a pattern of CDR3 usage across the experiments. Overall, we were able to find differences in the Ab repertoire diversity across experimental groups and tissues.


Assuntos
Medula Óssea/imunologia , Regiões Determinantes de Complementaridade/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Voo Espacial/métodos , Baço/imunologia , Vacinação/métodos , Sequência de Aminoácidos , Animais , Diversidade de Anticorpos/genética , Diversidade de Anticorpos/imunologia , Medula Óssea/metabolismo , Regiões Determinantes de Complementaridade/genética , Feminino , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos Endogâmicos C57BL , RNA-Seq/métodos , Baço/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34253616

RESUMO

Somatic hypermutation (SHM) and class-switch recombination (CSR) of the immunoglobulin (Ig) genes allow B cells to make antibodies that protect us against a wide variety of pathogens. SHM is mediated by activation-induced deaminase (AID), occurs at a million times higher frequency than other mutations in the mammalian genome, and is largely restricted to the variable (V) and switch (S) regions of Ig genes. Using the Ramos human Burkitt's lymphoma cell line, we find that H3K79me2/3 and its methyltransferase Dot1L are more abundant on the V region than on the constant (C) region, which does not undergo mutation. In primary naïve mouse B cells examined ex vivo, the H3K79me2/3 modification appears constitutively in the donor Sµ and is inducible in the recipient Sγ1 upon CSR stimulation. Knockout and inhibition of Dot1L in Ramos cells significantly reduces V region mutation and the abundance of H3K79me2/3 on the V region and is associated with a decrease of polymerase II (Pol II) and its S2 phosphorylated form at the IgH locus. Knockout of Dot1L also decreases the abundance of BRD4 and CDK9 (a subunit of the P-TEFb complex) on the V region, and this is accompanied by decreased nascent transcripts throughout the IgH gene. Treatment with JQ1 (inhibitor of BRD4) or DRB (inhibitor of CDK9) decreases SHM and the abundance of Pol II S2P at the IgH locus. Since all these factors play a role in transcription elongation, our studies reinforce the idea that the chromatin context and dynamics of transcription are critical for SHM.


Assuntos
Histona-Lisina N-Metiltransferase/imunologia , Histonas/imunologia , Hipermutação Somática de Imunoglobulina , Animais , Linfócitos B/imunologia , Linfoma de Burkitt/enzimologia , Linfoma de Burkitt/genética , Linfoma de Burkitt/imunologia , Linhagem Celular Tumoral , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Switching de Imunoglobulina , Regiões Constantes de Imunoglobulina/genética , Regiões Constantes de Imunoglobulina/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Lisina/genética , Lisina/imunologia , Metilação , Camundongos
10.
J Clin Immunol ; 41(7): 1597-1606, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34184208

RESUMO

PURPOSE: Adenosine deaminase (ADA) deficiency causes severe combined immunodeficiency (SCID) through an accumulation of toxic metabolites within lymphocytes. Recently, ADA deficiency has been successfully treated using lentiviral-transduced autologous CD34+ cells carrying the ADA gene. T and B cell function appears to be fully restored, but in many patients' B cell numbers remain low, and assessments of the immunoglobulin heavy (IgHV) repertoire following gene therapy are lacking. METHODS: We performed deep sequencing of IgHV repertoire in peripheral blood lymphocytes from a child following lentivirus-based gene therapy for ADA deficiency and compared to the IgHV repertoire in healthy infants and adults. RESULTS: After gene therapy, Ig diversity increased over time as evidenced by V, D, and J gene usage, N-additions, CDR3 length, extent of somatic hypermutation, and Ig class switching. There was the emergence of predominant IgHM, IgHG, and IgHA CDR3 lengths after gene therapy indicating successful oligoclonal expansion in response to antigens. This provides proof of concept for the feasibility and utility of molecular monitoring in following B cell reconstitution following gene therapy for ADA deficiency. CONCLUSION: Based on deep sequencing, gene therapy resulted in an IgHV repertoire with molecular diversity similar to healthy infants.


Assuntos
Agamaglobulinemia/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Imunodeficiência Combinada Severa/imunologia , Adenosina Desaminase/deficiência , Adenosina Desaminase/uso terapêutico , Agamaglobulinemia/terapia , Terapia de Reposição de Enzimas , Feminino , Terapia Genética , Humanos , Lactente , Contagem de Linfócitos , Imunodeficiência Combinada Severa/terapia
11.
Biochem Biophys Res Commun ; 562: 154-161, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34058562

RESUMO

Overexpression of Axl, a TAM-family receptor tyrosine kinase, plays key roles in the formation, growth, and spread of tumors as well as resistance to targeted therapies and chemotherapies. We identified novel llama VHHs against human Axl using multiple complementary phage display selection strategies and characterized a subset of high-affinity VHHs. The VHHs targeted multiple sites in Ig-like domains 1 and 2 of the Axl extracellular domain, including an immunodominant epitope overlapping the site of Gas6 interaction and two additional non-Gas6 competitive epitopes recognized by murine monoclonal antibodies. Only a subset of VHHs cross-reacted with cynomolgus monkey Axl and none recognized mouse Axl. As fusions to human IgG1 Fc, VHH-Fcs bound Axl+ tumor cell lines and mertansine-loaded VHH-Fcs were cytotoxic in vitro against Axl+ cells in proportion to their binding affinities. Engineered biparatopic VHH-VHH heterodimers bound Axl avidly, and a subset of molecules showed dramatically enhanced association rates indicative of intramolecular binding. These VHHs may have applications as modular elements of biologic drugs such as antibody-drug conjugates.


Assuntos
Afinidade de Anticorpos/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Células CHO , Camelídeos Americanos , Morte Celular , Linhagem Celular Tumoral , Cricetulus , Células HEK293 , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cinética , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Receptores Proteína Tirosina Quinases/química , Proteínas Recombinantes de Fusão/metabolismo
12.
Mol Immunol ; 135: 320-328, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971510

RESUMO

Using antibody drug conjugates (ADC) which can exclusively bind to their target cells and upon internalization release their toxic agent, is one of the most effective methods for killing tumor cells. Therefore, increasing the internalization rate is an important factor for tumor treatment in this case. The aim of the present study was to develop a new variant of pertuzumab (an anti-ErbB2 humanized antibody) with higher internalization rate that can be a good candidate for the production of ADC. To this end, the Human Immunodeficiency Virus TAT Protein Transduction Domain (TAT-PTD) was replaced into the structure of the pertuzumab. At first, the best site in antibody heavy chain constant region for the replacement of TAT-PTD was predicted through computational methods. Then, the resulting recombinant antibody, of which TAT-PTD was located at amino acid position 130-140 and named Tatibody, was produced in CHO-S cell line. Finally, its physicochemical properties and biological activities were evaluated and compared with pertuzumab. Results showed that the binding ability of Tatibody to the ErbB2 receptor is similar to that of pertuzumab, but its internalization potency is 3.6 fold higher and can be used as a good candidate for ADC construction.


Assuntos
Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas Recombinantes/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Animais , Anticorpos Monoclonais Humanizados/imunologia , Afinidade de Anticorpos/imunologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Simulação de Acoplamento Molecular , Conformação Proteica , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Proteínas Recombinantes/imunologia
13.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658386

RESUMO

V(D)J recombination generates mature B cells that express huge repertoires of primary antibodies as diverse immunoglobulin (Ig) heavy chain (IgH) and light chain (IgL) of their B cell antigen receptors (BCRs). Cognate antigen binding to BCR variable region domains activates B cells into the germinal center (GC) reaction in which somatic hypermutation (SHM) modifies primary variable region-encoding sequences, with subsequent selection for mutations that improve antigen-binding affinity, ultimately leading to antibody affinity maturation. Based on these principles, we developed a humanized mouse model approach to diversify an anti-PD1 therapeutic antibody and allow isolation of variants with novel properties. In this approach, component Ig gene segments of the anti-PD1 antibody underwent de novo V(D)J recombination to diversify the anti-PD1 antibody in the primary antibody repertoire in the mouse models. Immunization of these mouse models further modified the anti-PD1 antibodies through SHM. Known anti-PD1 antibodies block interaction of PD1 with its ligands to alleviate PD1-mediated T cell suppression, thereby boosting antitumor T cell responses. By diversifying one such anti-PD1 antibody, we derived many anti-PD1 antibodies, including anti-PD1 antibodies with the opposite activity of enhancing PD1/ligand interaction. Such antibodies theoretically might suppress deleterious T cell activities in autoimmune diseases. The approach we describe should be generally applicable for diversifying other therapeutic antibodies.


Assuntos
Afinidade de Anticorpos/genética , Cadeias Pesadas de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Receptores de Antígenos de Linfócitos B , Hipermutação Somática de Imunoglobulina , Recombinação V(D)J/imunologia , Animais , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Camundongos , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia
14.
Pathol Int ; 71(4): 245-254, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33713540

RESUMO

It is difficult to diagnose immunoglobulin heavy chain amyloidosis (AH amyloidosis) without proteomic analysis due to no useful diagnostic antibodies. The aim of this study was to develop diagnostic antibodies available to immunohistochemistry and immunoblotting. Two rabbit anti-heavy chain variable region antibodies were generated and evaluated in immunohistochemical studies performed on 11 AH amyloidosis patients and 64 patients with other systemic amyloidoses. Additionally, immunoblotting was performed using extracted amyloid protein from one patient and serum samples from two patients with AH amyloidosis. Immunohistochemical analysis generated a positive outcome in 10 of 11 AH amyloidosis patients (sensitivity 90.9%). While positive staining was also observed in 9 of 64 non-AH amyloidosis patients (specificity 85.9%), substitution of the blocking agent reversed the positive reactivity in 5 of 9 patients. Amyloid protein band was clearly detected via immunoblotting analysis, and protein bands with similar molecular weights of amyloid protein were observed in serum samples from patients with AH amyloidosis. The two antibodies may represent a powerful diagnostic tool for AH amyloidosis. In addition, our data revealed the existence of amyloidogenic variable region fragments in the serum of patients, suggesting their potential as diagnostic markers for AH amyloidosis.


Assuntos
Amiloidose/diagnóstico , Testes Imunológicos/métodos , Amiloidose/imunologia , Anticorpos , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Imuno-Histoquímica
15.
MAbs ; 13(1): 1887612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33616001

RESUMO

Chemical modifications (attributes) in the binding regions of stressed therapeutic proteins may affect binding to target and efficacy of therapeutic proteins. The method presented here describes the criticality assessment of therapeutic antibody modifications by size-exclusion chromatography (SEC) of competitive binding between a stressed antibody and its target, human epidermal growth factor receptor-2 (HER2), followed by SEC fractionation and peptide mapping characterization of bound and unbound antibodies. When stressed antibody and its target were mixed at a stoichiometric molar ratio of 1:2, only antibody-receptor complex eluted from SEC, indicating that binding was not decreased to break the complex. When a smaller amount of the receptor was provided (1:1), the antibody species with modifications reducing binding eluted as unbound from SEC, while the antibody-receptor complex eluted as the bound fraction. Peptide mapping revealed ratios of modifications between unbound and bound fractions. Statistical analysis after triplicate measurements (n = 3) indicated that heavy chain (HC) D102 isomerization and light chain (LC) N30 deamidation were four-fold higher in unbound fraction with high statistical significance. Although HC N55 deamidation and M107 oxidation were also abundant, they were not statistically different between unbound and bound. Our findings agree with previously published potency measurements of collected CEX fractions and the crystal structure of antibody and HER2. Overall, competitive SEC of stressed antibody-receptor mixture followed by peptide mapping is a useful tool in revealing critical residues and modifications involved in the antibody-target binding, even if they elute as a complex from SEC when mixed at 1:2 stoichiometric ratio.


Assuntos
Antígenos/metabolismo , Cromatografia em Gel , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Antígenos/química , Antígenos/imunologia , Ligação Competitiva , Cromatografia Líquida de Alta Pressão , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Luz , Ligação Proteica , Estabilidade Proteica , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Trastuzumab/química , Trastuzumab/imunologia
16.
MAbs ; 13(1): 1870058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397191

RESUMO

Bispecific antibodies, engineered to recognize two targets simultaneously, demonstrate exceptional clinical potential for the therapeutic intervention of complex diseases. However, these molecules are often composed of multiple polypeptide chains of differing sequences. To meet industrial scale productivity, enforcing the correct quaternary assembly of these chains is critical. Here, we describe Chain Selectivity Assessment (CSA), a high-throughput method to rationally select parental monoclonal antibodies (mAbs) to make bispecific antibodies requiring correct heavy/light chain pairing. By deploying CSA, we have successfully identified mAbs that exhibit a native preference toward cognate chain pairing that enables the production of hetero-IgGs without additional engineering. Furthermore, CSA also identified rare light chains (LCs) that permit positive binding of the non-cognate arm in the common LC hetero-IgGs, also without engineering. This rational selection of parental mAbs with favorable developability characteristics is critical to the successful development of bispecific molecules with optimal manufacturability properties.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Afinidade de Anticorpos/imunologia , Cromatografia em Gel/métodos , Cromatografia por Troca Iônica/métodos , Cromatografia Líquida/métodos , Eletroforese Capilar/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Engenharia de Proteínas/métodos
17.
MAbs ; 13(1): 1862451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33491549

RESUMO

Bispecific antibodies are an important and growing segment in antibody therapeutics, particularly in the immuno-oncology space. Manufacturing of a bispecific antibody with two different heavy chains is greatly simplified if the light chains can be the same for both arms of the antibody. Here, we introduce a strain of common light chain chickens, called OmniClic®, that produces antibody repertoires largely devoid of light chain diversity. The antibody repertoire in these chickens is composed of diverse human heavy chain variable regions capable of high-affinity antigen-specific binding and broad epitope diversity when paired with the germline human kappa light chain. OmniClic birds can be used in immunization campaigns for discovery of human heavy chains to different targets. Subsequent pairing of the heavy chain with a germline human kappa light chain serves to facilitate bispecific antibody production by increasing the efficiency of correct pairing. Abbreviations: AID: activation-induced cytidine deaminase; bsAb: bispecific antibody; CDR: complementarity-determining region; CL: light chain constant region; CmLC: common light chain; D: diversity region; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; Fc: fragment crystallizable; FcRn: neonatal Fc receptor; FR: framework region; GEM: gel-encapsulated microenvironment; Ig: immunoglobulin; IMGT: the international ImMunoGeneTics information system®; J: joining region; KO: knockout; mAb: monoclonal antibody; NGS: next-generation sequencing; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PGC: primordial germ cell; PGRN: progranulin; TCR: T cell receptor; V: variable region; VK: kappa light chain variable region; VL: light chain variable region; VH: heavy chain variable region.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Galinhas/imunologia , Epitopos/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Animais , Antígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citometria de Fluxo/métodos , Humanos , Imunização/métodos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias kappa de Imunoglobulina/imunologia , Engenharia de Proteínas/métodos
18.
Clin Cancer Res ; 27(3): 729-739, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051305

RESUMO

PURPOSE: Approximately 30% of patients with chronic lymphocytic leukemia (CLL) can be grouped into subsets with stereotyped B-cell receptor immunoglobulin (BcR IG) displaying remarkable similarity in the heavy complementarity-determining region 3 (VH CDR3). Here, we investigated whether the consensus VH CDR3 sequences from CLL stereotyped subsets can be exploited for immunotherapy approaches. EXPERIMENTAL DESIGN: Immunogenic epitopes from the consensus VH CDR3 sequence of the clinically aggressive subsets #1 and #2 and from Eµ-TCL1 mice, which spontaneously develop CLL with BcR IG stereotypy, were identified and used to generate specific HLA class I- and II-restricted T cells in vitro. T-cell reactivity was assayed in vitro as IFNγ production. Bone marrow-derived dendritic cells loaded with the peptides were used as vaccination strategy to restrain leukemia development in the Eµ-TCL1 mouse model. RESULTS: These stereotyped epitopes were naturally processed and presented by CLL cells to the VH CDR3-specific T cells. Furthermore, we validated the efficacy of VH CDR3 peptide-based immunotherapy in the Eµ-TCL1 transplantable mouse model. Immunization of mice against defined VH CDR3 peptide epitopes, prior to the challenge with the corresponding leukemia cells, resulted in the control of CLL development in a significant fraction of mice, and increased overall survival. CONCLUSIONS: Our data highlight the immunogenicity of stereotyped VH CDR3 sequences and support the feasibility and efficacy of their use for novel cancer vaccine in CLL. Such approach has the advantage to generate "off-the-shelf" therapeutic vaccines for relevant groups of patients belonging to stereotyped subsets.See related commentary by Seiffert, p. 659.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/uso terapêutico , Epitopos de Linfócito T/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Receptores de Antígenos de Linfócitos B/imunologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Regiões Determinantes de Complementaridade/metabolismo , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/metabolismo , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Cultura Primária de Células , Proteínas Proto-Oncogênicas/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
19.
Exp Hematol ; 93: 14-24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976948

RESUMO

B-Cell receptor (BCR) sequencing has been the force driving many recent advances in chronic lymphocytic leukemia (CLL) research. Here, we discuss the general principles, revelations, and applications of reading the BCR immunome in the context of CLL. First, IGHV mutational status, obtained by measuring the mutational imprint on the IGHV gene of the CLL clonotype, is the cornerstone of CLL risk stratification. Furthermore, the discovery of "BCR-stereotyped" groups of unrelated patients that share not only a highly similar BCR on their leukemic clone, but also certain clinical characteristics has provided insights key to understanding disease ontogeny. Additionally, whereas the BCR repertoire of most CLL patients is characterized by a single dominant rearrangement, next-generation sequencing (NGS) has revealed a rich subclonal landscape in a larger than previously expected proportion of CLL patients. We review the mechanisms underlying these "multiple dominant" cases, including V(D)J-recombination errors, failure of allelic exclusion, intraclonal diversification, and "true" bi- or oligoclonality, and their implications, in detail. Finally, BCR repertoire sequencing can be used for sensitive quantification of minimal residual disease to potentially unprecedented depth. To surmount pitfalls inherent to this approach and develop internationally harmonized protocols, the EuroClonality-NGS Working Group has been established.


Assuntos
Fenômenos Imunogenéticos , Leucemia Linfocítica Crônica de Células B/genética , Receptores de Antígenos de Linfócitos B/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Mutação , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/imunologia , Recombinação V(D)J
20.
Fish Shellfish Immunol ; 110: 44-54, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33348037

RESUMO

Nile tilapia (Oreochromis niloticus) is a freshwater fish, which is extensively cultivated worldwide and constitutes one of the model species for the study of fish immunology. Monoclonal antibodies are very advantageous molecular tools for studying teleost immune system. Specifically, monoclonal antibodies that react with immunoglobulins are used successfully in the study of the humoral immune response of several fish species. In the present study, we produced and characterized a monoclonal antibody against tilapia IgM heavy chain using a peptide-based strategy. The peptide sequence was selected from the surface-exposed region between CH3-CH4 domains. The specificity of the polyclonal serum and the hybridoma culture supernatant obtained by immunization with the peptide conjugated to keyhole limpet hemocyanin were evaluated by western blotting, both showing reactivity against tilapia serum IgM. The purified mAb was able to recognize secreted IgM by western blotting and ELISA and membrane IgM by flow cytometry. We also demonstrated that the antibody doesn't cross-react with a recombinant IgT fragment. This tool allowed us to study for the first time the stimulation of mucosal immunity after Pituitary Adenylate Cyclase Activating Polypeptide administration. Overall, the results demonstrated the utility of this mAb to characterize humoral immune response in O. niloticus.


Assuntos
Anticorpos Monoclonais/imunologia , Ciclídeos/imunologia , Proteínas de Peixes/imunologia , Imunidade Humoral , Cadeias Pesadas de Imunoglobulinas/imunologia , Imunoglobulina M/imunologia , Sequência de Aminoácidos , Animais , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA